
Structures
A structure is a group of variables collected together under a single name. One of these
variables is called an element of the structure, in a similar way to the numbered elements of an
array.
A structure element is identified by the structure name and the variable:

struct.element%

Structures are implemented by a special use of a floating point variable called an entity. This
holds a pointer to the structure data and the prototype to interpret it.

DEF Defines a new structure prototype as a list of element names. A prototype cannot be deleted.
prototype=DEF(int%,str$,float)
Variable types are not identical to BASIC variables, but may look and act very similarly:

integer% a 4-byte integer
string$ a string, max 255 bytes, a 5-byte SIB
string$[n] a buffered string, max n bytes, truncated

read and write as string$
string! an indirected string in an external buffer

write as string!=buffer%
read as string$

byte? a 1-byte integer
float| a 5-byte floating point number
substr{proto} a substructure to be created
substr{} an indirected substructure
array*(n) an array with n+1 elements

* may be % $ ? | !
array#(n) a bit array with n+1 elements, byte aligned
arrary*() an indirected normal array

* may be % $ |
array(n){proto} an array of n+1 substructures

NEW Creates a new structure from a prototype that is already defined.
struct=NEW(prototype)
An existing block of memory can also be used as a structure by linking it to a prototype.

DELETE Deletes a structure and all its dependencies.

\ \ is used to assign a set of values to the elements of a structure:
\struct=1,"two",3.3,vec(5)
or on creation:
struct=NEW(prototype=1,"two",3.3,vec(5))

\ For a single element ‘\’ is used to mean “the value of”, hence:
\struct.int%=1
or
integer%=\struct.int%
The ‘\’ syntax can be used almost anywhere that a standard variable is used, except that it cannot be for formal pa-
rameters or local variables.

Nesting A structure can be included as an element of another, provided that the prototype has been defined. The
substructure is created as if NEW had been used, but it is then exclusive to its superstructure.
supertype=NEW(STRUCT=int%,substruct{prototype},str$)
Then:
superstruct=NEW(supertype)
\superstruct.int%=5
\superstruct.substruct.int%=10
\superstruct.substruct.str$="Hello world"
\superstruct.str$="Goodbye"


	DEF
	NEW
	DELETE
	\
	\
	Nesting

